Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
STAR Protoc ; 3(3): 101460, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1867903

ABSTRACT

We describe a protocol to identify physicochemical properties using amino acid sequences of spike (S) proteins of SARS-CoV-2. We present an S protein prediction technique named SPIKES, incorporating an inheritable bi-objective combinatorial genetic algorithm to determine the host species specificity. This protocol addresses the S protein amino acid sequence data collection, preprocessing, methodology, and analysis. For complete details on the use and execution of this protocol, please refer to Yerukala Sathipati et al. (2022).


Subject(s)
SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Host Specificity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
iScience ; 25(1): 103560, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1549854

ABSTRACT

Knowledge of the host-specific properties of the spike protein is of crucial importance to understand the adaptability of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to infect multiple species and alter transmissibility, particularly in humans. Here, we propose a spike protein predictor SPIKES incorporating with an inheritable bi-objective combinatorial genetic algorithm to identify the biochemical properties of spike proteins and determine their specificity to human hosts. SPIKES identified 20 informative physicochemical properties of the spike protein, including information measures for alpha helix and relative mutability, and amino acid and dipeptide compositions, which have shown compositional difference at the amino acid sequence level between human and diverse animal coronaviruses. We suggest that alterations of these amino acids between human and animal coronaviruses may provide insights into the development and transmission of SARS-CoV-2 in human and other species and support the discovery of targeted antiviral therapies.

3.
J Proteome Res ; 20(5): 2942-2952, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1185364

ABSTRACT

There is an urgent need to elucidate the underlying mechanisms of coronavirus disease (COVID-19) so that vaccines and treatments can be devised. Severe acute respiratory syndrome coronavirus 2 has genetic similarity with bats and pangolin viruses, but a comprehensive understanding of the functions of its proteins at the amino acid sequence level is lacking. A total of 4320 sequences of human and nonhuman coronaviruses was retrieved from the Global Initiative on Sharing All Influenza Data and the National Center for Biotechnology Information. This work proposes an optimization method COVID-Pred with an efficient feature selection algorithm to classify the species-specific coronaviruses based on physicochemical properties (PCPs) of their sequences. COVID-Pred identified a set of 11 PCPs using a support vector machine and achieved 10-fold cross-validation and test accuracies of 99.53% and 97.80%, respectively. These findings could provide key insights into understanding the driving forces during the course of infection and assist in developing effective therapies.


Subject(s)
COVID-19 , Chiroptera , Amino Acid Sequence , Animals , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL